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A new approach to the classic closure problem for turbulent boundary layers is
presented. This involves, first, using the well-known mean-flow scaling laws such as
the log law of the wall and the law of the wake of Coles (1956) together with the
mean continuity and the mean momentum differential and integral equations. The
important parameters governing the flow in the general non-equilibrium case are
identified and are used for establishing a framework for closure. Initially closure
is achieved here empirically and the potential for achieving closure in the future
using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined.
Comparisons are made with experiments covering adverse-pressure-gradient flows in
relaxing and developing states and flows approaching equilibrium sink flow. Mean
velocity profiles, total shear stress and Reynolds stress profiles can be computed for
different streamwise stations, given an initial upstream mean velocity profile and the
streamwise variation of free-stream velocity. The attached eddy model of Perry &
Marusic (1995) can then be utilized, with some refinement, to compute the remaining
unknown quantities such as Reynolds normal stresses and associated spectra and
cross-power spectra in the fully turbulent part of the flow.

1. Introduction
The motivation for this work is to develop a framework for incorporating coherent

structure concepts into the classic closure problem of turbulent boundary layer
streamwise evolution. The closure scheme makes as much use as possible of the
classical similarity laws which have won wide support, namely, the logarithmic law of
the wall and the law of the wake of Coles (1956). When used in conjunction with the
usual boundary layer mean momentum differential equation and the mean continuity
equation, expressions for the total shear stress distribution can be rigorously derived
in the manner of Perry, Marusic & Li (1994). From this, four non-dimensional
parameters emerge which describe the state of the layer. It is assumed that there
exists a universal relationship among these four parameters. This relationship must
be determined experimentally and existing data are sparse. An interpolation and
extrapolation scheme is devised so that flow cases outside and between regions
already observed can be computed. The extension of the Townsend (1976) attached
eddy hypothesis by Perry & Marusic (1995) and Marusic & Perry (1995) aids in

† Sadly, Professor Perry died on 3 January 2001 during the preparation of this paper.
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this interpolation and extrapolation. The application of this extended attached eddy
hypothesis is yet to be completed, but this initial attempt forms a backbone for the
empirical formulation.

With the aid of the momentum integral equation, a pair of coupled nonlinear first-
order ODEs emerges which can be solved so that the streamwise evolution of the layer
can be computed. All that is needed is the specification of an initial velocity profile and
the streamwise distribution of free-stream velocity. One interesting outcome is that a
nonlinear dynamical system approach to the evolution of turbulent boundary layers
emerges here which is similar to the famous idea first expressed by Clauser (1956)
with his black box analogy where the independent time variable in dynamical systems
is replaced by a variable related to the streamwise coordinate x. The resulting ODEs
are autonomous or non-autonomous depending on the external flow geometry. If the
equations are autonomous, phase-plane trajectories can be mapped out for different
initial conditions and these trajectories, in some cases, can converge to critical points
or equilibrium points which correspond to the precise equilibrium flow discussed by
Rotta (1962).

From an extension of the Townsend (1976) attached eddy hypothesis Perry &
Marusic (1995) and Marusic & Perry (1995) showed that given the streamwise
development of the mean-velocity field and Reynolds shear stress field, the Reynolds
normal stresses and associated spectra can be evaluated. The present approach allows
the streamwise development of the mean-velocity field to be computed. Although the
proposed approach is restricted, further work will surely generalize it. The evolution
calculations are currently restricted to two-dimensional flow on a flat surface with
an imposed streamwise pressure gradient. Flow separation cannot yet be handled.
However, some preliminary unpublished work by the authors shows that surface
roughness might perhaps be incorporated quite easily. Recently, lateral divergence
has been included in the shear stress formulation giving the potential for extensions.
Over certain regions of the various parameters the closure is, in principle, complete.
All that is required is the specification of an initial upstream mean velocity profile
and the streamwise variation of the free-stream velocity. From this the streamwise
evolution of all mean velocity profiles and total shear stress profiles can be computed.

It should be emphasized that the present aim of this work is not to produce a
viable code for general engineering computations but to develop a framework for
the study of the dynamics of turbulent boundary layer evolution for simple cases.
At the moment the attached eddy hypothesis is a kinematic description and this
framework will aid in putting some dynamics into the physical modelling. Finally,
if the assumptions involved are verified with further data, the closure scheme could
serve as a tool for producing accurate benchmark computations of simple cases for
the testing of more complex and speculative methods.

2. Shear stress profiles
As stated earlier, Perry et al. (1994) derived a general analytical expression for the

shear stress profile for a flat-plate turbulent boundary layer evolving in a streamwise
pressure gradient. This is summarized here. The usual boundary layer mean momen-
tum equation where streamwise gradients of normal stresses are negligible is given by
(e.g. see Rotta 1962)

U
∂U

∂x
+W

∂U

∂z
= −1

ρ

dp1

dx
+

1

ρ

∂τ

∂z
, (2.1)
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where
τ

ρ
= −u1u3 + ν

∂U

∂z
. (2.2)

Here U is the mean streamwise component of velocity, W is the mean normal to the
wall velocity, x is the streamwise coordinate, z is normal to the wall, u1 and u3 are the
streamwise and wall-normal fluctuating components of velocity, an overbar denotes
a temporal mean, p1 is the free-stream static pressure and ν is the kinematic viscosity.
The mean continuity equation is given by

∂U

∂x
+
∂W

∂z
= 0, (2.3)

and if U1 is the free-stream velocity, then

−1

ρ

dp1

dx
= U1

dU1

dx
. (2.4)

It is assumed that the mean velocity profile can be described by the Coles (1956) log
law of the wall and law of the wake formulation, i.e.

U

Uτ

=
1

κ
log

[
zUτ

ν

]
+ A+

Π

κ
Wc[η,Π]. (2.5)

Here Uτ is the local friction velocity, Π is Coles’ wake factor, η = z/δc where δc is the
boundary layer thickness, and κ and A are universal constants. Wc is the universal
wake function and many functional forms have been proposed. The logarithmic law
of the wall is used and for the purpose of computing the total shear stress and overall
momentum balance, it is assumed valid right to the wall. For practical ranges of
Reynolds numbers this approximation is justified as was shown by Jones, Marusic &
Perry (2001). Equation (2.5) can be expressed in velocity defect form as

U1 −U
Uτ

= − ln[η] +
Π

κ
Wc[1, Π]− Π

κ
Wc[η,Π]

= f[η,Π] (2.6)

and so

U = U1 −Uτf[η,Π]. (2.7)

By substituting (2.7) into the continuity equation (2.3) an expression for the normal
velocity W is obtained in terms of the other mean flow variables and their streamwise
derivatives. The expressions for U and W along with their appropriate derivatives
can then be substituted into (2.1). This is then integrated with respect to z and using
(2.4) as a boundary condition an expression for the total shear stress is obtained and
is given as (A 1) in Appendix A. Further details are given in that Appendix.

Four non-dimensional parameters emerge which describe the state of the layer:
they are

Π, S =
U1

Uτ

, β =
δ∗

τ0

dp

dx
, ζ = Sδc

dΠ

dx
. (2.8)

Here S is a skin friction parameter where U1 is the local free-stream velocity, β is
the Clauser (1954, 1956) pressure gradient parameter where δ∗ is the displacement
thickness, τ0 is wall shear stress, p is the free-stream static pressure, x is streamwise
distance and ζ is a non-equilibrium parameter. The total shear stress is given by

τ

τ0

= f1[η,Π, S] + g1[η,Π, S]ζ + g2[η,Π, S]β. (2.9)
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Here f1, g1 and g2 are known universal analytical functions and their precise form
will depend on the functional form chosen for Wc. Their formulations are long, each
requiring several pages and can be found using Mathematica or Maple. Their structure
is discussed in Perry & Marusic (1995). One important property of f1, g1 and g2 is
that they become independent of S for S sufficiently large. It should be noted that g1

is negative and f1 and g2 are positive quantities. Thus a positive ζ causes a decrease
in shear stress. Throughout this paper, the streamwise gradient of normal stresses has
been neglected and this was found to be valid for all experimental data considered
here.

3. Closure formulation for approximate-equilibrium and quasi-
equilibrium flow

Perry et al. (1994) used the shear stress information to develop a closure scheme
for calculating the streamwise evolution of a turbulent boundary layer developing
in an arbitrary pressure gradient. The cases they considered were not completely
arbitrary and were confined to flows which were either in approximate equilibrium
or quasi-equilibrium. In approximate equilibrium flows, Π is assumed to be constant
and in quasi-equilibrium flows, Π is allowed to vary with x but this variation is
sufficiently slow to keep the effects of the parameter ζ small. From (2.9) this would
occur if ∣∣∣∣g1[η,Π, S]ζ

τ/τ0

∣∣∣∣� 1. (3.1)

In both cases the shear stress profiles are characterized only by Π (approximately).
In this early work it was not yet clear how ζ could be incorporated. In this paper
we will consider the general non-equilibrium case where finite ζ values are taken into
account. However let us briefly review this earlier work.

If Π is invariant with x, then we have a self-similar velocity defect distribution
and let us assume that this implies a self-similar shear stress distribution. We know
that this is not possible precisely since Rotta (1962) has shown that for smooth wall
flows precise equilibrium is possible only in sink flow. However, perhaps we can find
conditions with the aid of (2.9) which will give approximate self-similarity of the
shear stress distributions for a fixed Π . We will refer to this condition as ‘approximate
equilibrium’. Let us force all shear stress profiles for a fixed Π to match at η = m for
all S . Then (2.9) gives

τ

τ0

[m,Π] =L[m,Π] = f1[m,Π, S] + g2[m,Π, S]β. (3.2)

Note that since Π is invariant with x, ζ = 0. It turns out that with m = 0.4, quite
reasonable self-similarity of shear stress profiles is possible for each Π for the whole
range of Π values over the full range of S . See Perry (1992) for details. From (3.2) a
relationship among Π , β and S can be constructed with the aid of experimental data.
Suppose that for a fixed x, Π , S and β are known from experiment. Hence L[m,Π]
is known and if we keep Π fixed and vary S we can see how β must vary to ensure
approximate self-similarity of the shear stress profiles. Now it can be seen from the
structure of (2.9) detailed in (A 8) that as S →∞, (2.9) becomes invariant with S and
so β approaches an asymptotic value of βa for fixed Π . If this can be carried out with
a sufficient number of experimental flow cases, we can determine

βa = βa[Π]. (3.3)
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With the aid of (3.2) and (3.3) we can map out the relationship

C[Π, β, S] = 0, (3.4)

which is assumed universal for all approximate-equilibrium flows. If we take this
further and allow Π to vary slowly with x but with ζ sufficiently small to ignore,
then we have what we will call ‘quasi-equilibrium’ flow and (3.4) is assumed to be still
valid.

Clauser (1954, 1956) originally postulated that (approximate) equilibrium layers
could be achieved by keeping β constant (i.e. invariant with streamwise distance x
and hence S) but Perry (1992) showed this gives poor self-similarity of the shear stress
profiles for the whole range of possible S and, as was just shown, β must vary with
S . Other criteria postulated in the past were also tested and Perry (1992) showed
that when the momentum integral equation is used all theories and conditions tested
for approximate equilibrium yielded S → ∞ as the streamwise Reynolds number
Rx = (xU0/ν) → ∞, where U0 is a reference free-stream velocity at an arbitrarily
chosen value of x and ν is the kinematic viscosity. It turns out that as S → ∞ we
achieve precise equilibrium asymptotically, i.e. perfect self-similar shear stress profiles.

At infinite S , C is no longer a function of S . If this procedure is repeated for different
values of Π , a one-to-one relationship between βa and Π can be found empirically.
There have been various curve-fits for β and Π in the literature (although in past
work S was assumed finite and the effect of the variable S was ignored). White (1974)
proposed

Π = 0.8(βa + 0.5)0.75. (3.5)

Formulations which assume that both the velocity defect and shear stress distributions
are controlled by the one parameter Π automatically imply that we have a universal
relation for eddy viscosity ε of the form

ε/(δcUτ) = φ[η,Π]. (3.6)

This does not necessarily mean that there is a gradient diffusion mechanism at
work but by default (3.6) works for the quasi-equilibrium cases. Unfortunately, such
formulations are known to break down in non-equilibrium flows. Figure 1, which is
taken from Marusic & Perry (1995), shows clearly how flows with the same Π value
can have very different shear stress distributions. In the last part of his paper, Clauser
(1956) effectively developed the concept of the universal eddy viscosity distribution
given by (3.6) for approximate-equilibrium layers. This was taken up by many workers
who applied it to non-equilibrium layers.

4. New formulation for general flows
The restricted formulation of Perry et al. (1994) will now be extended with the

effect of the parameter ζ included so that the non-equilibrium flow problem can be
solved. Therefore, the function (3.4) needs to be replaced by

F[Π, S, β, ζ] = 0 (4.1)

and so we have to work in a higher dimensional space than did Perry et al. (1994).
It is assumed that no further parameters are involved in (4.1) and F is universal.
Hence in order to describe the state of the layer, we require three of the four variables
in the above expression. The mapping out of equation (4.1) from experimental data
would be extremely difficult because of the sparseness of the data. In what follows,
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Figure 1. Comparison of non-equilibrium data of Marusic & Perry (1995) where Π = 2.46 and
3.23 (10APG) with interpolated data for the same values of Π for the equilibrium flow of East,
Sawyer & Nash (1979). Lewkowicz’s (1982) profile formulation used for Π (see § 4).
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b

log S

Figure 2. The (S, β)-plane at fixed Π . Heavy solid line indicates the trajectory of the least-squares
error in shear stress profile matching with known profile at D.

a mathematical framework for interpolation and extrapolation with sparse data is
developed. In analogy with C in (3.4) F is independent of S for S →∞ and β and ζ
reach asymptotic values of βa and ζa for a fixed Π .

From figure 1 it is obvious that the shear stress distribution needs at least two
parameters to describe it and we will assume that

τ

τ0

= f[η,Π, βa]. (4.2)

It will be shown a little later that (4.2) is valid for infinite S . It is hypothesized that this
two-parameter relation is also valid and unchanged for finite S . For quasi-equilibrium
flows Perry et al. (1994) relied on a one-parameter family to describe the shear stress,
i.e. τ/τ0 = f[η,Π] where f is assumed to be universal.

If the two-parameter property of (4.2) is used in conjunction with (2.9), some
information can be obtained regarding (4.1) as follows. Consider the (S, β)-plane at
a fixed Π as shown in figure 2. If such a plane contains an experimental datum
point D, then S , Π , β and ζ are known for point D from experiment and so also is
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τ/τ0 versus η from (2.9). From point D trace out on the (S, β)-plane a curve along
which points have the same distribution of τ/τ0 versus η as occurs at point D. This is
done by optimizing β and ζ for different S such that the best matching occurs with
the distribution at D. The matching may not be precise but hopefully will be close
enough for practical purposes. Therefore at each point along the heavy curve shown
in figure 2 we will know β and ζ.

By taking S → ∞ we obtain asymptotic values of βa and ζa as shown in figure 2.
(Going to S = ∞ is simply a convenient curve-fitting procedure and could never
be approached experimentally.) This process of keeping the profile distribution fixed
will be referred to as ‘profile matching’ and the details of the method used here are
given in the following section. If this process is repeated often enough for different
Π then we obtain a Π, βa diagram with distributions of extrapolated data points
corresponding to different values of ζa. By a surface fit to ζa on the (Π, βa)-plane,
contours of ζa can be mapped out and we thus have a known universal function ψ:

ψ[Π, βa, ζa] = 0. (4.3)

Closure rests completely on (4.3) and this relation involves only three variables. By
shear stress profile matching we can then map out isosurfaces of ζ in Π, β, S space
and thus (4.1) is known (see later). Let us show that (4.2) is valid for infinite S . From
(2.9) as S → ∞ the only parameters which control τ/τ0 are Π , βa and ζa, and from
(4.1) we have (4.3) (i.e. ψ[Π, βa, ζa] = 0). It is seen that for a fixed Π specification
of βa also specifies ζa and no further parameters are required. As stated earlier, this
two-parameter property is assumed valid at finite S which effectively means that shear
stress profile matching is possible at all S for a fixed Π .

4.1. Profile matching

The shear stress profile matching technique used here involves using a least-squares
error criterion to find optimum β and ζ for a fixed Π and S . We find

∂

∂β

{∫ 1

0

[(
τ

τ0

)
−
(
τ

τ0

)
D

]2

dη

}
= 0,

∂

∂ζ

{∫ 1

0

[(
τ

τ0

)
−
(
τ

τ0

)
D

]2

dη

}
= 0,


(4.4)

where τ/τ0 is the shear stress distribution at any point on the (β, S)-plane for fixed
Π and (τ/τ0)D is the shear stress distribution at a known datum point, e.g. point D
in figure 2. For a well-defined matching trajectory the solid line in figure 2 would
correspond to a deep valley on a contour plot of least-square error. Taking (4.4) to
S → ∞ means that we use ∂/∂βa and ∂/∂ζa as the derivatives and we can show
generally that

A1[Π, S] + B1[Π, S]ζ + C1[Π, S]β = D1[Π]ζa + E1[Π]βa,

A2[Π, S] + B2[Π, S]ζ + C2[Π, S]β = D2[Π]ζa + E2[Π]βa,

}
(4.5)

where A1, A2, B1, B2 etc. are all known analytical functions. Their functional forms
will depend on the type of wall-wake formulation chosen. Several forms have been
proposed and in the Perry et al. (1994) study the formulation due to Lewkowicz
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(1982) was used. Here we will use the recently proposed formulation of Jones et al.
(2001)

U

Uτ

=

Log-law of the wall︷ ︸︸ ︷
1

κ
ln

[
zUτ

ν

]
+ A − 1

3κ
η3︸ ︷︷ ︸

Pure wall flow

+

Pure wake component︷ ︸︸ ︷
Π

κ
2η2(3− 2η) (4.6)

where κ = 0.41 is the Kármán constant and A is the universal smooth-wall constant
taken here to be 5.0. This formulation was found to work particularly well in
describing the ‘pure-wall’ component of the flow as found in sink flows. Note that
with this type of functional form the maximum deviation from the log law is not the
classic 2Πc/κ but will be a nonlinear function of Π – see Jones et al. (2001). Here Πc

is the classical value for the Coles wake function and is related to Π by

Πc =
144Π3

(12Π + 1)2
. (4.7)

It should be noted that once Uτ has been found (e.g. by the Clauser chart method)
(4.6) can be used to devise several rigorous and systematic methods for determining
Π and δc, see Appendix C for one example.

Figure 3(a) shows a comparison of how well the resulting profile matching works
for fixed Π with S varying from the values obtained from experiment up to S = 108

for the data of Marusic & Perry (1995). Each Π case appears as a single curve but is
actually five curves superimposed for different values of S for optimum β and ζ. This
is a great improvement over the matching technique of Perry et al. (1994) where shear
stresses were crudely forced to match at η = 0.4 as given in § 3. Figures 3(b) and 3(c)
show similar matching calculations for the flows of Bradshaw & Ferriss (1965) and
Samuel & Joubert (1974). These figures show that (4.2) is possible for all S , at least
on theoretical grounds.

4.2. New evolution equations

The equations which govern the streamwise evolution of a turbulent boundary layer
can be found after considerable algebra by using the momentum integral equation,
the log law of the wall and law of the wake together the definitions for β and ζ. Some
details are given in Appendix B. A coupled set of ODEs results:

dS

dRx
=
χ[Rx, RL]R[S,Π, ζ, β]

SE[Π] exp[κS]
, (4.8)

and
dΠ

dRx
=

ζχ[Rx, RL]

S2E[Π] exp[κS]
. (4.9)

Two auxiliary equations are needed to solve for the integration. The first is (4.1), i.e.

F[Π, S, β, ζ] = 0.

This relation is generated from (4.3) and (4.5). The second auxiliary equation is

S2E[Π] exp[κS]
1

χ2

dχ

dRx
= − β

C1[Π]
. (4.10)

Equation (4.8) comes from the momentum integral equation and the log law of the
wall and law of the wake. Equation (4.9) comes from the log law of the wall and law
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Figure 3. Matched shear stress profiles using (2.9) and (4.4) for fixed experimental Π with different
values of S . Five curves are present for each value of Π . The heavy line was computed using the
experimental values of S , β and ζ from (a) Marusic & Perry (1995) 30 APG, (b) Bradshaw &
Ferriss (1965) and (c) Samuel & Joubert (1974).

of the wake and from the definition of ζ. Equation (4.10) comes from from the log
law of the wall and law of the wake and the definition of β. The functions appearing
in (4.8) and (4.9) are defined as follows:

R[S,Π, β, ζ] =

S+β(2S−C2[Π]/C1[Π])+ζ

(
C1[Π]SN − C2[Π]N−S dC1[Π]

dΠ
+

dC2[Π]

dΠ

)
κC1[Π]S2 − κC2[Π]S + C2[Π]

(4.11)

where

N = Wc[1, Π] +Π
dWc[1, Π]

dΠ
, (4.12)

and from (4.6)

Wc[η,Π] = − 1

3Π
η3 + 2η2(3− 2η), (4.13)
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from which it follows that N = 2. Also

C1[Π] =

∫ 1

0

U1 −U
Uτ

dη = (Π + 3/4)/κ, (4.14)

C2[Π] =

∫ 1

0

(
U1 −U
Uτ

)2

dη = (1248Π2 + 2140Π + 1215)/(840κ2) (4.15)

and

E[Π] = exp

[
−κ
(
A+

Π

κ
Wc[1, Π]

)]
, (4.16)

Rx =
xU0

ν
, RL =

LU0

ν
, (4.17)

where U0 is the value of the free-stream velocity at some initial point Rx = 0, U1 is
the free-stream velocity at some general value of x or Rx and L is a characteristic
length scale of the U1 distribution. RL is an overall Reynolds number of the apparatus
and χ[Rx, RL] = U1/U0; usually χ = χ[Rx/RL], i.e. χ = χ[x/L]. This latter form would
occur if the free-stream velocity distribution was independent of Reynolds number,
i.e. when boundary layer displacement thickness effects can be ignored and no other
viscid–inviscid interactions are occurring. All of the above equations can be reduced
to two coupled first-order nonlinear ODEs of the form

dS

dRx
= φ1[Π, S, Rx, RL], (4.18)

dΠ

dRx
= φ2[Π, S, Rx, RL]. (4.19)

5. Application of the extended attached eddy hypothesis
The preceding section describes the theory required to compute the evolution of

the mean flow field of a turbulent boundary layer. In principle, this could be done
using empirical information (4.3) and hence (4.1). Here we explore the viability of
employing the attached eddy hypothesis to assist in finding a description for the
formulation ψ[Π, βa, ζa] = 0.

Perry et al. (1994) attempted to apply the attached eddy hypothesis for determining
βae = βae[Π] with some limited success. Here βae = βa for ζa = 0. They assumed that
all eddies were of type A as shown in their figure 2.9(a) whose vortex cores extended
to the wall. They used two convolution integrals first derived by Perry, Li & Marusic
(1991):

dUD
∗

dλE
=

∫ ∞
−∞
h[λ]e−λT [λ− λE]w[λ− λE] dλ (5.1)

uiuj

U2
τ

=

∫ ∞
−∞
Jij[λ]T

2[λ− λE]w[λ− λE] dλ. (5.2)

Here λE = ln(δc/z) and λ = ln(δ/z) where δ is the eddy length scale. T is a weighting
function dependent on the characteristic velocity scale of an eddy of length scale δ
and w is a weighting factor dependent on the wall-surface-area population density
of eddies of length scale δ. Also, h[λ] is a vorticity function dependent on eddy
shape and Jij is the Townsend (1976) eddy intensity function also dependent on eddy
shape. All eddies are assumed to be geometrically similar. In Perry et al. (1994) by
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Figure 4. (a) Sketch of a representative wall eddy, i.e. type A, (b) sketch of a representative wake
eddy, i.e. type B and (c) type A and type B eddy contributions to the total shear stress. (a, b) After
Perry & Marusic (1995) and Chong et al. (1998).

the use of (4.6) in conjunction with (5.1), a deconvolution yields Tw. By the use of
(2.9) in conjunction with (5.2) with various assumptions and some convolutions and
deconvolutions and a least-squares matching of shear stress profiles given by (2.9)
and (5.2) a numerical result for βae = βae[Π] was found.

However in the light of further work of Perry & Marusic (1995) and Marusic &
Perry (1995) mainly concerned with problems with normal stress distributions, it was
found necessary to use two structures, namely wall eddies, type A, and wake eddies,
type B, as shown in figure 4. The vortex cores of type B do not extend to the wall
but undulate in the spanwise direction. Although the wall attached eddies are capable
of giving the correct shear stress distribution and mean velocity defect distribution,
with the use of (5.1) and (5.2) they cannot reproduce the bumps at η = 0.5 in the
streamwise and spanwise components of the Reynolds stress distribution and at the
same time give the correct distributions close to the wall. There are also difficulties
with the component of Reynolds stress normal to the wall. See figures 5, 6 and 7
of Marusic & Perry (1995). Wall eddies produce the pure wall flow as designated in
equation (4.6) and the wake eddies produce the pure wake component as designated
in (4.6). These two distinct eddy shapes were decided on after a long series of tests
with all manner of eddy shapes. Type B eddies are responsible for the mean wake
component of the velocity defect law and for the wake contribution to the Reynolds
shear stress. The wall eddy contribution to the Reynolds shear stress is that given
by what Coles (1957) calls pure wall flow, which is equivalent to (according to the
authors’ interpretation) β = βae = −1/2; Π = 0 and S → ∞ and this is substituted
into (2.9) to obtain the wall eddy contribution of shear stress. Figure 4 shows this
schematically. It should be noted here that pure wall flow occurs in equilibrium sink
flow where dS/dRx = 0 and ζ = 0. It can be shown from (4.8) that β = βae = −1/2 as
S →∞; see § 4.2 of Jones et al. (2001) for details. Coles hypothesized that Π = 0 also
for this case. Although there is no proof for this, experiment certainly indicates that
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Π approaches small values in sink flow (see Jones et al. 2001). The wake component
of shear stress is obtained by subtracting the pure wall component as shown in
figure 4(c).

Fortunately we need not elaborate on or make any commitments concerning the
eddy shapes here. Hence

dU∗D
dλE

=
dUD

∗
A

dλE
+

dUD
∗
B

dλE
=

∫ ∞
−∞
hA[λ]e−λTA[λ− λE]wA[λ− λE] dλ

+

∫ ∞
−∞
hB[λ]e−λTB[λ− λE]wB[λ− λE] dλ (5.3)

and

−u1u3

U2
τ

= −
(
u1u3

U2
τ

)
A

−
(
u1u3

U2
τ

)
B

=

∫ ∞
−∞
−J13A[λ]T 2

A[λ− λE]wA[λ− λE] dλ

+

∫ ∞
−∞
−J13B[λ]T 2

B[λ− λE]wB[λ− λE] dλ

(5.4)

where A and B denote quantities associated with type A and type B eddies. The essen-
tial difference between this and the Perry et al. (1994) approach is the decomposition
into two convolution integrals with two sets of weighting functions. We now subtract
the contribution of type A eddies assuming that these are universal, i.e. independent
of Π and give pure wall flow, and the wall component of the Reynolds stress which
is also universal, i.e. independent of Π .

Thus what follows is a consideration of type B eddies alone with S → ∞ and
ζa = 0. Hence

dUD
∗
B

dλE
=

∫ ∞
−∞
hB[λ]e−λTB[λ− λE]wB[λ− λE] dλ. (5.5)

Let us put

TB[λ− λE] = T̂BΨ [ξ], wB[λ− λE] = ŵBΦ[ξ], (5.6)

where T̂B and ŵB are weighting factor coefficients, ξ = λ− λE = ln(δ/δc) and Ψ and
Φ are assumed to be functions of ξ alone. Experience with data and computations
shows this form to be approximately true and a form of structural similarity is implied
by this. Integrate (5.5) to give

UD
∗
B[0] =

2Π

κ
= T̂BŵB

∫ 1

0

1

η

∫ ∞
−∞
hB[λ]e−λΨ [ξ]Φ[ξ] dλ dη; (5.7)

the integral is a universal number N (say) and so

T̂BŵB =
2Π

κN . (5.8)

Now hB[λ]e−λ will have the general property of being zero at λ = ±∞ and Ψ [ξ]Φ[ξ]
must be such that (5.7) converges. In the case of the wall component the corresponding
equation to (5.7) does not converge since the defect law is logarithmic for η → 0.
Now the Reynolds shear stress wake component is given by

−
(
u1u3

U2
τ

)
B

=

∫ ∞
−∞
−J13B[λ]T 2

B[λ− λE]wB[λ− λE] dλ. (5.9)
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Integrate to give∫ 1

0

−
(
u1u3

U2
τ

)
B

dη = T̂B
2
ŵB

∫ 1

0

∫ ∞
−∞
−J13B[λ]Ψ 2[ξ]Φ[ξ] dλ dη (5.10)

and so ∫ 1

0

−
(
u1u3

U2
τ

)
B

dη = MT̂B
2
ŵB, (5.11)

where M is a universal number as given by the double integral on the right-hand side
of equation (5.10).

It can be shown from (2.9) that for S → ∞ after subtracting the pure wall
component, ∫ 1

0

(
τ

τ0

)
B

dη ≈ γ(βae + 1/2). (5.12)

It has only a very weak dependence on Π and γ is a universal constant.
Hence from (5.11) and (5.12) we have

γ(βae + 1/2) = MT̂B
2
ŵB. (5.13)

We now postulate (purely because it seems plausible and appears to agree with
experiment) that

T̂B
2

ŵB
= P , (5.14)

where P is a universal constant for all equilibrium layers, i.e. for all βae. If we assume
power law relations, i.e.

T̂B ∝ Πa, ŵB ∝ Πb, (5.15)

then from (5.8) and (5.14) we obtain a = 1/3 and b = 2/3, i.e.

T̂B
2
ŵB ∝ Π4/3, (5.16)

and from (5.11) ∫ 1

0

−
(
u1u3

U2
τ

)
B

dη = GΠ4/3, (5.17)

where G is a universal constant. Hence from (5.13)

βae + 1/2 = QΠ4/3, (5.18)

where Q is a universal constant. Figure 5 shows experimental data compared to (5.18)
and it is seen that Q = 1.21 represents a good fit. Therefore

βae = −1/2 + 1.21Π4/3 (5.19)

or

Π = 0.86(βae + 1/2)3/4, (5.20)

which is very close to (3.5), the expression used by White (1974). It is interesting to
note that the numerical values −1/2 and 4/3 appearing in (5.19) come from theory.
It is hoped that the simple expression given by (5.14) (which seems to work) can be
combined with further knowledge to give a deeper physical insight.
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A more complete solution which avoids the approximation given by equation (5.12)
can be found from (2.9) as follows:∫ 1

0

(
τ

τ0

)
B

dη = f1i[Π,∞]− f1i[0,∞] + g2i[Π,∞]βae + g2i[0,∞] 1
2
. (5.21)

Here the suffix i denotes integration with respect to η from 0 to 1, and (5.21) is equal
to GΠ4/3 from (5.17). In Appendix D it is shown from (2.9) that g2i[Π,∞] = f1i[Π,∞]
and that g2i[0,∞] = 2/5. Therefore

βae = −1 + (GΠ4/3 + 1/5)/g2i[Π,∞]. (5.22)

If we make G = 0.71 this is almost indistinguishable from (5.19) as seen in figure 6.
Therefore, we see that the attached eddy model can be used to fully describe the
quasi-equilibrium flow problem where ζa = 0. Equations (5.19) and (5.22) are based
on the presence of type B eddies. As Π diminishes these eddies also diminish and so
the theory behind (5.19) and (5.22) may break down because of the dominance of
type A eddies.

The next step involves considering finite ζa effects. This is where dynamic effects
are introduced into this extended attached eddy hypothesis. As a first attempt to do
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this, the appropriate term in (2.9) could be included so that (5.22) reads

βa = −1 + (GΠ4/3 − g1i[Π,∞]ζa + 1/5)/g2i[Π,∞]. (5.23)

Although (5.23) gives a family of curves for different ζa on the (Π, βa)-plane, it is
essentially equivalent to a universal distribution of eddy viscosity mentioned earlier.
This is because the assumptions leading to equation (5.17) are consistent with all shear
stress profiles requiring only Π to be specified. This implies that G is a constant. In
reality G could be a function of ζa and Π . This remains a topic of further study. One
regime where things are likely to be different is in the case of very high Π values.

5.1. High Π values

The profile matching technique described in § 4 is found to break down when Π
becomes very large (approx. Π > 5)† with non-unique solutions for βa and ζa being
possible. This situation is understood by examining equation (2.9) for S → ∞ and Π
large. As shown in Appendix D the functions pre-multiplying ζa and βa are found to
very closely resemble each other in shape and for Π →∞

−g1[η,∞,∞] =
g2[η,∞,∞]

2κ
.

If this is the case, the shear stress profile shape is then determined by only one
parameter, i.e.

βa − ζa

2κ
.

In other words, any combination of βa and ζa may be valid provided the above
parameter is fixed. Hence the profile matching method becomes ill-conditioned. More
data are needed and perhaps more modelling so as to map out F[Π, S, β, ζ] = 0.
Then our computational procedure will work provided the log law of the wall and the
law of the wake and the usual mean momentum and continuity equations are valid.
Also, streamwise gradients of normal stresses must be negligible. When discussing
separation, we need to ask how close to separation do we need to get? For Sk̊are &
Krogstad (1994) (τ/τ0)max = 17 and Π = 6.85 with ζ sufficiently small to neglect and
these authors entitled their paper ‘A turbulent boundary layer near ‘separation’. These
data are just outside the limit for accurate interpolation and extrapolation procedures.
Most layers documented to be close to separation are best described as hovering in
a state of incipient separation over long streamwise distances with the effects of ζ
small. Quasi-equilibrium theory should hold and the streamwise gradients of normal
stresses should be small. However, layers approaching separation with high ζ, e.g. just
upstream of a separation bubble, probably have large streamwise gradients of normal
stresses and the problem is elliptic (see Perry & Fairlie 1975), who approximated the
approaching boundary layer as an inviscid region of constant vorticity with slip and
used the Euler equations to successfully describe the vortical flow in and upstream
of a separation bubble). Here boundary layer assumptions break down and the use
of a prescribed external free-stream velocity is no longer an appropriate approach.
Also, too close to any state of separation, the validity of the log law of the wall
and the law of the wake becomes questionable (see Dengel & Fernholz 1990). To

† The data of Sk̊are & Krogstad (1994) in figure 5 (Π = 6.9) were obtained by assuming that the
ζ = 0 contour in figure 2 was the same as for a trajectory of fixed shear stress distribution which
passes a datum point of ζ = 0. This was approximately true for lower values of Π .
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Perry (1995) 30APG; e, Bradshaw & Ferriss (1965); �, Marusic & Perry (1995) 10APG; ∗, Samuel
& Joubert (1974).

predict separation points together with separation bubbles, conventional boundary
layer theory will not handle the problem no matter what closure model we use.

6. Application to experiments
6.1. Closure equation

In order to evaluate the evolution of the boundary layer a general expression is
needed for (4.3), i.e.

ψ[Π, βa, ζa] = 0.

Although the attached eddy model can assist us for quasi-equilibrium flow, at the
present time we still require a model for finite ζa values. The answer can be found em-
pirically provided enough experimental information is available. A survey of existing
experimental studies showed surprisingly how little reliable data are at present avail-
able. Moreover, in many cases the data in the literature failed the two-dimensional
conservation of mean momentum test using (2.9). A collection of available results,
believed to be the most reliable, covering a representative range of Π, βa, ζa space is
shown in figure 7. This plot represents the present state of experimental knowledge
of closure of turbulent boundary layers and it can be seen to be very sparse. This is a
rather disappointing state of affairs after over 40 years of data collection. All of these
data had Reynolds shear stress data available where most profiles agreed reasonably
well with equation (2.9). Using these data, a first tentative form for (4.3) has been
estimated to be

∆βa =

{
ζ2
a (1.10/Π2) if ζa > 0
ζa(0.62 + 0.25Π) if ζa < 0.

(6.1)

Here

∆βa = βa − βae (6.2)

where βae is the value of βa for ζa = 0 and is given by (5.19) as obtained from the
attached eddy model. Figure 8 shows plots of equation (6.1). It should be pointed
out that quantities like βa and ζa were determined in part from β and ζ which are
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found by differentiating curve fits to discrete data points. This is inherently inaccurate,
particularly for ζ which was defined by very few points on a Π versus x plot. The
quantity β was more accurate since plots of U1 versus x had points including regions
upstream and downstream of the last and first measuring stations. Inaccuracies in both
βa and ζa are caused mainly by inaccuracies in ζ. Thus (6.1) was found by perturbing
the constants in the original surface fit to figure 7 until reasonable solutions to the
ODEs were obtained, with the computed ζ in some cases differing from experiment
but within a reasonable experimental error band. Reasonable results were obtained
as can be seen from figure 9, discussed later.

Given the evident sparseness of the experimental data, equation (6.1) can only be
regarded as tentative. One interesting feature worth noting is the rapid change of
the ζa surface slope dζa/dβa on the (βa,Π)-plane at ∆βa = 0. This might reflect the
possibility that the processes in developing flows (ζa > 0) and relaxing flows (ζa < 0)
are quite different physically. The use of the terms ‘developing’ and ‘relaxing’ defined
by the sign of ζ was introduced by White (1974).

An early formulation by Perry, Marusic & Jones (1998) is continuous at low Π
but a discontinuity in the slope of the ζa surface develops, i.e. a crease develops with
increasing Π along the ζa = 0 curve. The present formulation (6.1) has a crease for
all Π at ζa = 0. Perhaps one could formulate a continuous function for the slope at
ζa = 0 by weighting the two expressions given in (6.1) so that one expression merges
or morphs into the other as the ζa = 0 curve is crossed but we do not have sufficient
data to do this with conviction. At Π = 2.5 it is quite obvious that ‘in the large’ the
slope of the ζa surface for fixed Π is quite different for ζa > 0 and ζa < 0.

However there is another possible interpretation of all of this. Perhaps there will
be cases which at finite S have a positive ζ but when extrapolated to S → ∞ with
shear stress profile matching we obtain a ζa which is negative and vice versa. The sink
flow cases in § 6.3.1 support this view. Hence perhaps we should define developing
flow as flow with positive ζ as opposed to positive ζa and all such flows would give
a (Π, βa)-plane with contours of ζa both positive and negative and we conjecture ζa
will be a regular function of βa at ζa = 0. We would then map out isosurfaces of ζ
in the S , β, Π space and denote it as developing flow. Any negative isosurface of ζ
will have no physical meaning but will have mathematical meaning in the curve- and
surface-fitting formulation.
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Similarly there would be a corresponding (Π, βa)-plane with contours of ζa for
relaxing flow where ζ is negative and again ζa will be positive and negative. There
will be a corresponding S , β, Π space with isosurfaces of ζ and the positive ζ will
have only mathematical meaning. During the course of a computation there would
be a switch from one space to the other if a developing flow becomes a relaxing flow.
All of this is pure conjecture.

Here, we monitor ζa to decide which expression of (6.1) to use. This is equivalent
to assuming that the ζ = 0 contour on the (S, β)-plane for fixed Π is also a curve
for fixed shear stress distribution. This is not quite true but in the philosophy of
quasi-equilibrium theory it is approximately true. If this were precisely true then any
data at finite S with a positive ζ will always give a positive ζa with profile matching,
and similarly a negative ζ will always yield a negative ζa with profile matching.
There is another difficulty which needs to be explored in the future. With some
trial formulations for (6.1) singularities have been seen to occur in the S, β,Π space
which we believe are physically unrealistic and should be removed by appropriate
adjustment of (6.1). This might be a useful constraint on our choice of (6.1). There is
no point in further serious development of (6.1) without more experimental data.

6.2. Non-autonomous cases

Equations (4.18) and (4.19) are applicable to the non-equilibrium turbulent boundary
layer evolution. The independent variable Rx appears explicitly on the right-hand side
of the equations making them non-autonomous. This is what Clauser (1956) referred
to as a black box with a clock inside. Autonomous cases will be studied in the next
section.

Using (6.1) the evolution of several non-equilibrium flows were calculated given
initial profiles and the results are shown in figure 9. The flows considered cover a
broad distribution of adverse-pressure-gradient conditions. The flow of Bradshaw &
Ferriss (1965) is a relaxing flow, the two Marusic & Perry (1995) cases are developing
flows and the Samuel & Joubert (1974) case has a short relaxing region followed by
a developing region. Good agreement can be seen with experiment. This should be so
since the data tested were used to formulate (6.1) in the first place. These calculations
at least show that the scheme proposed is viable and the mathematics is working
correctly.

Figures 10 and 11 show the computed shear stress profiles derived from the
evolution results given in figure 9. These are compared with the measured Reynolds
shear stress distributions and the results are very encouraging. In principle, Reynolds
normal stresses and associated spectra and cross-power spectra could be computed
for the fully turbulent part of the flow, i.e. z+ > 100, using the convolution approach
of Perry & Marusic (1995) and Marusic & Perry (1995). In fact this has already been
done by Marusic & Perry (1995) for their data presented here (see their figure 6). Of
course further refinements would need to be made, such as the appropriate choice
of representative eddy shapes and approximations to account for the Kolmogorov
eddies (see Perry & Marusic 1995; Marusic & Perry 1995). In figure 11(b), the good
agreement with experimental Reynolds shear stresses of the Bradshaw & Ferriss (1965)
stresses is considered fortuitous. Shear stress profiles generated by (2.9) when using
experimental values of S , Π , β and ζ are shown in figure 3(b). Agreement with results
of figure 11 are not quite as good as the other cases. Thus there appears to be an
anomality between measured stresses and overall momentum balances. Coles & Hirst
(1969) mention that there appeared to be some three-dimensional contamination.
Nevertheless, this case is included since it is the best we have for relaxing flow.
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It should be noted that in solving the evolution equations, the position of Rx = 0 is
arbitrary. In all cases Rx = 0 and U1 = U0 was taken to occur at the trip wire. When
integrating the ODEs, the first profile was always at a finite value of Rx (Rx = Rxi
say) and care was taken to ensure that Rθ was sufficiently large for the theory to be
accurate at this initial Reynolds number Rxi , see Appendix C Jones et al. (2001).

6.3. Autonomous cases

Clauser (1956) referred to this case as a black box without a clock inside. For flow
cases such as zero pressure gradient, source flow or sink flow, (1/χ2)(dχ/dRx) in (4.10)
becomes a constant K , where for source flows

K =
−2πν

Q
= − 1

RL
,

whereas for sink flows

K =
2πν

Q
=

1

RL
,

and for zero-pressure-gradient flows K = 0 . Here Q is the strength of the source
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Figure 10. Reynolds shear stress data of Marusic & Perry (1995) for (a) 10APG and (b) 30APG,
compared to predicted evolution of the total shear stress from (2.9) using computed solutions of
(4.8) and (4.9) with (4.10), (4.5) and (6.1). Profiles correspond with the data points in figure 9.

or sink (see figures 12 and 15 below). For these cases (4.18) and (4.19) become
autonomous by an appropriate change in the independent variable Rx to Tx to give

dS

dTx
= ψ1[Π, S,K], (6.3)

dΠ

dTx
= ψ2[Π, S,K]. (6.4)

where Tx = −(ln(1 − RxK))/K . Also, in the limit as K → 0 (i.e. zero-pressure-
gradient flow) Tx = Rx. This means that solution trajectories can be displayed on the
(S,Π)-phase plane for various initial conditions for fixed K .

Figure 12 shows a schematic representation of source flow and figure 13 shows
calculations for a series of different initial conditions. As mentioned earlier, this is
an autonomous system and so the solution can be displayed on a (S,Π)-phase-plane
diagram. There is no experimental data for this case so it represents a genuine
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Source Q

U0

U1

xL

0

Figure 12. Schematic of source flow boundary layer; note that the origin for x is arbitrary.

prediction. The range of validity of (6.1) is very limited in ζa and this may have been
exceeded in computing figure 13. However whether the intriguing pattern shown in
figure 13 is realistic cannot be known due to a complete lack of experimental data.
The heavy broken line in figure 13 is from the Perry et al. (1994) quasi-equilibrium
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calculation using (5.19) for βae. It can be seen that for that calculation we are not
free to choose the initial conditions for Π and S independently.

In figure 14 is shown the case of a zero-pressure-gradient flow as calculated by
Perry et al. (1998), using preliminary versions of (5.20) and (6.1). It can be seen that
this layer rapidly asymptotes into the quasi-equilibrium layer of Perry et al. (1994)
and becomes a true equilibrium layer only at infinite Reynolds numbers. The initial
condition are chosen to correspond to Coles (1962) ‘standard trip’ development at a
value of Rθ sufficiently large for the theory to be accurate. Other initial conditions
should be systematically studied experimentally. What this formulation implies is that
a zero-pressure-gradient layer is not an equilibrium layer but it is an autonomous
layer which rapidly asymptotes into a quasi-equilibrium layer and reaches a state of
precise equilibrium (self-similarity) only at infinite Reynolds numbers. Under these
conditions it is simple to show that the evolution equations yield the analytical form
of the Kármán law of skin friction (see Perry 1992).
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Figure 15. Schematic of sink flow boundary layer; note that the origin for x is arbitrary.
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Figure 16. Data of Jones (1998). Each point has a different value of ζa. Solid line corresponds to
equation (6.5) for ζa = 0. The curve fits are localized and the extent of the plot is shown in figure 6
for comparison.

6.3.1. Approaching sink flow

A recent thorough study of sink flows was carried out by Jones (1998) and Jones
et al. (2001) and these are also considered here. Such flows are a good example
of favourable-pressure-gradient flows. A sink-flow turbulent boundary layer is one
whose pressure gradient follows that of a two-dimensional potential sink. The flow is
shown schematically in figure 15. Townsend (1956) and Rotta (1962) identified sink
flow as the only smooth wall boundary layer that may evolve to a state of precise
equilibrium at finite S for flows which are two-dimensional in the mean. A precise
equilibrium layer is one where all mean and turbulence measurements are invariant
with streamwise distance, when they are scaled with the correct velocity and length
scales. In this experimental study, three acceleration parameters (K) were investigated
with a total of 62 mean flow stations. Figure 16 shows the corresponding βa versus
Π data. Expression (6.1) is not expected to apply in this range of Π .

The heavy solid line in figure 16 corresponds to a curve fit for the ζa = 0 data
points with the functional form

βae = −0.5 + 1.38Π + 0.13Π2. (6.5)
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Figure 17. Evolution of mean flow parameters for flow of Jones (1998), see also Jones et al.
(2001). Symbols represent data; solid lines correspond to calculation. Note in these figures that x is
measured from the trip wire.

Equations (6.5) and (5.19) are very close for Π greater than about 2. Data show that
(6.5) is more valid for low Π (i.e. Π < 0.3) than (5.19) and (5.9). To find how these
curves merge and the associated contours of ζa will require more data. The lines of
constant ζa shown in figure 16 come from a localized surface fit:

ζa = (0.85− 6.9Π + 8Π2)∆βa. (6.6)

Computations were carried out without monitoring the sign of ζa since (6.6) is regular
(see discussion in § 6.1).

Using (6.6), (4.10) and the least-squares-error shear stress profile matching of (4.5),
formulation (4.1) can be described and thus equations (4.8) and (4.9) can now be
put into the form of (6.3) and (6.4) and we can compute the evolution of the
boundary layer given any initial station where Π and S are known. Figure 17 shows
a comparison between the experimental data and computation and good agreement
is observed. This shows that the closure scheme is a viable one and indicates that the
mathematics is working correctly. Figure 18 shows the progressive improvement in
the description of the streamwise evolution of β. In figure 18(a) the result of a quasi-
equilibrium formulation using the Green, Weeks & Brooman (1973) formula is shown,
figure 18(b) is a quasi-equilibrium calculation using (6.5) and finally figure 18(c) is
the non-equilibrium calculation using (6.5) and (6.6).

To help determine the range in which equation (6.6) might be extended, a series of
initial conditions were tried for the evolution of sink flow for a given K value. The
results are shown in figure 19. As mentioned earlier, with sink flow the governing
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Figure 18. Evolution of β for flow of Jones (1998). Three evolution calculations are shown,
corresponding to: (a) quasi-equilibrium calculation using the Green et al. (1973) formula,
(b) quasi-equilibrium calculation using (6.5) and (c) the full non-equilibrium calculation using
(6.5) and (6.6).
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Figure 19. Phase-plane solution trajectories for sink flow (K = 3.59× 10−7) starting from different
initial conditions. Heavy line trajectory corresponds to flow case in figure 17.

equations are autonomous. This means that the (S,Π)-plane is a phase plane and
solution trajectories can only cross at critical points. As can be seen in the figure,
solution trajectories converge to an equilibrium solution as expected, i.e. a stable node
critical point, but we observe that two such critical points and a saddle point exist
between these two stable nodes. The Π ≈ 0 solution is the expected one and the other
would seem to result when using equation (6.6) beyond its range of applicability.

As in the quasi-equilibrium calculations of Jones et al. (2001), these more complete
non-equilibrium equations predict precise equilibrium at finite S with Π at a small
but positive value and β slightly more negative than −1/2. Because Π is very small
(i.e. virtually pure wall flow) it seems that there exists not one universal pure wall
flow with S = ∞ and β = −1/2 but a whole family of pure wall shear stress
profiles characterized by S . This may be important when applying the attached eddy
hypothesis of Perry & Marusic (1995) at finite S .



86 A. E. Perry, I. Marusic and M. B. Jones

0.4

0.2

0

–0.2

–0.4

–0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
P

ba

Equation (6.5)

Equation (5.15)

Conjectured f
a

= 0 f
a

> 0

f
a

< 0

Figure 20. Conjectured βa for combining the contours of figure 8 with 16.

7. Conclusions and discussion
This closure scheme is based on the log law of the wall, law of the wake, the

mean continuity and momentum differential equations and the momentum integral
equation with the usual boundary layer approximations and neglecting the streamwise
gradients of the normal stresses. Analysis shows that the mean velocity profiles and
total shear stress profiles are completely described by the four parameters S , Π , β
and ζ as first suggested by Perry et al. (1994). It is further assumed that there is a
universal relation of the form F[Π, S, β, ζ] = 0. This function has to be determined
from experimental data. Once this is done closure is complete. However because of
the sparseness of the data some aids are required for interpolation and extrapolation.
One aid is based on the assumption that the shear stress profiles form a two-parameter
family as opposed to the one-parameter family implied in many eddy viscosity models.
By shear stress matching on this basis, results were interpolated and extrapolated. As
a further aid, the attached eddy hypothesis was used for forming a semi-theoretical
relation between βa and Π for ζa = 0. This modelling should be extended to include
finite values of ζa.

Evolution equations based on an integral approach are consistent with the attached
eddy hypothesis which utilizes convolution integrals. The above approach seems
more physically reasonable than most differential field methods because in reality the
transport properties at one point in the flow must be intimately related to motion
remote from that point. This feature is an important aspect of the attached eddy
hypothesis.

The proposed formulations for ψ[Π, βa, ζa] are very tentative and the variation
in its form between cases of moderate Π and very low Π gives some idea of the
complexity that may be involved in one general formulation covering all flows. From
an inspection of figures 8 and 16, positive and negative ζa contours at low Π have
to be accommodated with the corresponding contours of ζa at the higher Π . As
Clauser pointed out in his insightful 1956 paper when discussing such surfaces in an
appropriate multi-dimensional space, ‘The surface need not be continuous nor single
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valued. It may be difficult to determine, but, in principle, sufficient experimentation
can eventually plot out the entire surface’. The degree of complexity (or simplicity)
will not be known until this data is mapped out completely. A conjectured possibility
for combining the contours of figures 8 and 16 is given in figure 20.

The aim of the present work is to describe a possible framework for computing
streamwise evolution and assess its viability. The viability of the scheme has been
demonstrated here and further experimental data would be needed so that a single
formulation covering a broad range of parameters can be developed. The use of
models such as those based on the attached eddy hypothesis show potential and
should with further development be useful in helping to map out the Π, βa, ζa space
with appropriate interpolation and extrapolation schemes. Once the mean flow de-
velopment can be calculated there is the potential to apply the attached eddy model
of Perry & Marusic (1995) to evaluate the relevant turbulence quantities, such as
Reynolds normal stresses and spectra.

The authors wish to acknowledge the financial assistance of the Australian Research
Council.

Appendix A. Shear stress distribution
From (2.1) to (2.7) we have

τ

τ0

= 1 + A1X1 + A2X2 + A3X3 + A4X4, (A 1)

where

X1 =
dδc
dx

, X2 =
δc

S

dS

dx
, X3 = δc

dΠ

dx
, X4 =

δc

U1

dU1

dx
,

and

A1 =

∫ η

0

f2dη − f
∫ η

0

f dη + S

(
ηf −

∫ η

0

f dη

)
,

A2 = −2

∫ η

0

f2dη + S

∫ η

0

f dη + f

∫ η

0

f dη,

A3 =
d

dΠ

∫ η

0

f2dη − (f + S)
d

dΠ

∫ η

0

f dη,

A4 = 2

∫ η

0

f2dη − f
∫ η

0

f dη + S

(
ηf − 3

∫ η

0

f dη

)
.

There exists relationships between the Xi parameters which can be established
by considering the outer boundary conditions. The first boundary condition can be
established from the law of the wall and law of the wake with the outer boundary
condition U = U1; at z = δc this gives

S =
U1

Uτ

=
1

κ
ln

[
δcUτ

ν

]
+ A+

Π

κ
Wc[1, Π]. (A 2)

Then differentiating the above with respect to x it can be shown that

X2(κS + 1) = X4 +X1 +NX3, (A 3)

where

N = Wc[1, Π] +Π
dWc[1, Π]

dΠ
= 2.
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A further outer boundary condition exists, namely τ/τ0 = 0 at η = 1, and from (A 1)
this gives

0 = 1 + B1X1 + B2X2 + B3X3 + B4X4, (A 4)

where Bi = Ai[1, Π, S]. Equations (A 3) and (A 4) are used to eliminate X1 and X2

from the shear stress expression given in (A 1):

τ

τ0

= f1[η,Π, S] + f2[η,Π, S]δc
dΠ

dx
+ f3[η,Π, S]

δc

U1

dU1

dx
(A 5)

where

f1 = 1− A1

B1 + E1B2

− E1A2

B1 + E1B2

,

f2 =
E1NA2B1 + A3B1 − E1NA1B2 + E1A3B2 − A1B3 − E1A2B3

B1 + E1B2

,

f3 =
E1A2B1 + A4B1 − E1A1B2 − E1A4B2 − A1B4 − E1A2B4

B1 + E1B2

,


(A 6)

and E1 = 1/(1 + κS).
It is often more convenient to write (A 5) as

τ

τ0

= f1[η,Π, S] + g1[η,Π, S]ζ + g2[η,Π, S]β, (A 7)

where g1 = f2/S , g2 = −f3/(C1S).
The structures of the functions in (A 7) are

f1[η,Π, S] =
a1S

2 + a2S + a3

b1S2 + b2S + b3

,

g1[η,Π, S] =
c1S

3 + c2S
2 + c3S + c4

S(e1S2 + e2S + e3)
,

g2[η,Π, S] =
q1S

3 + q2S
2 + q3S + q4

S(r1S2 + r2S + r3)
,


(A 8)

where a1, a2 etc. are polynomials in η, log η and Π .

Appendix B. Evolution equations
The momentum integral equation is given by

dθ

dx
+

(H + 2)θ

U1

dU1

dx
=
C ′f
2
, (B 1)

where C ′f/2 = 1/S2. Using the defect function given in (2.6) in conjunction with the
wake expression contained in (4.6) expressions for the momentum and displacement
thickness are

θ = δc

(
C1[Π]

S
− C2[Π]

S2

)
, (B 2)

δ∗ =
δcC1[Π]

S
, (B 3)
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from which the terms appearing on the left-hand side of (B 1) can be expressed as

dθ

dx
=

dδc
dx

(
C1[Π]

S
− C2[Π]

S2

)
+ δc

(
dC1[Π]

dΠ

dΠ

dx

1

S
− dC2[Π]

dΠ

dΠ

dx

1

S2

)
+ δc

(−C1[Π]

S2

dS

dx
+

2C2[Π]

S3

dS

dx

)
(B 4)

and
(H + 2)θ

U1

dU1

dx
=

−β
C1[Π]S

(
3C1[Π]

S
− 2C2[Π]

S2

)
. (B 5)

Using the outer boundary condition given in (A 2) gives

δc =
ν

Uτ

E[Π] exp(κS) (B 6)

and hence
dδc
dx

= κδc
dS

dx
− δc

Uτ

dUτ

dx
− δcN dΠ

dx
. (B 7)

Substituting (B 7) into (B 4) gives

dθ

dx
= δc

(
κ

dS

dx
− 1

Uτ

dUτ

dx
−N dΠ

dx

)(
C1[Π]

S
− C2[Π]

S2

)
+ δc

(
dC1[Π]

dΠ

dΠ

dx

1

S
− dC2[Π]

dΠ

dΠ

dx

1

S2

)
+ δc

(−C1[Π]

S2

dS

dx
+

2C2[Π]

S3

dS

dx

)
. (B 8)

Putting

ζ = SδcdΠ/dx (B 9)

and noting

δc

Uτ

dUτ

dx
= − β

SC1[Π]
− δc

S

dS

dx

gives

dθ

dx
= δc

dS

dx

{
κ

(
C1[Π]

S
− C2[Π]

S2

)
+
C2[Π]

S3

}
+

β

SC1[Π]

(
C1[Π]

S
− C2[Π]

S2

)
+
ζ

S

{
−N

(
C1[Π]

S
− C2[Π]

S2

)
+

1

S

dC1[Π]

dΠ
− 1

S2

dC2[Π]

dΠ

}
. (B 10)

Also recall that β is given by

β =
δ∗

τ0

dp1

dx
= −C1[Π]Sδc

U1

dU1

dx
. (B 11)

Substituting (B 10), (B 6) and (B 5) into (B 1) gives (4.8). Substituting (B 6) into (B 9)
gives (4.9) and substituting (B 6) into (B 11) gives (4.10).

Appendix C. Determining experimental values of Π and δc
In the following, a systematic and self-consistent method for determining the

parameters Π and δc is proposed. First, it is assumed that the mean velocity profile
is described well by the law of the wall and law of the wake given by (4.6). Once
Uτ (i.e. S) has been found (e.g. by the Clauser chart method) the parameters can
be determined based on a parametric curve fit of (4.6) to data. Various curve fit
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techniques can be used (e.g. see Jones et al. 2001, for a crude but commonly used
technique for finding Π). A more accurate method is to use the experimental values of
displacement thickness and momentum thickness in order to determine the parameters
Π and δc.

From (B 2) and (B 3) the shape factor is,

H =
δ∗

θ
=

C1[Π]

C1[Π]− C2[Π]/S
. (C 1)

From (4.14) and (4.15) (C 1) is a quadratic in Π and hence can be solved for Π given
the experimental values of S and H . The appropriate root is

Π =
1

2496H
(−840κS − 2140H + 840HκS + 4(44100κ2S2

+ 28140HκS − 88200κ2S2H − 92855H2 − 28140H2κS

+ 44100H2κ2S2)1/2). (C 2)

Having found Π (B 3) can be solved for δc.

Appendix D. Some properties of the shear stress functions
In the expression for shear stress (2.9)

τ

τ0

= f1[η,Π, S] + g1[η,Π, S]ζ + g2[η,Π, S]β,

the functions f1, g1 and g2 are found to become independent of S as S →∞ and are
given by

f1[η,Π,∞] = 1 +

(
ηf −

∫ η

0

f dη

)
C1[Π]

, (D 1)

g1[η,Π,∞] =
d

dΠ

∫ η

0

f dη − dC1[Π]

dΠ

(
ηf −

∫ η

0

f dη

)
C1[Π]

, (D 2)

g2[η,Π,∞] =
2ηf

C1[Π]
. (D 3)

Here f is the velocity defect, which using (2.5) can be expressed by

f[η,Π] =
U1 −U
Uτ

= −1

κ
log η +

Π

κ
(Wc[1, Π]−Wc[η,Π]) (D 4)

and which using formulation (4.6) is given by

f[η,Π] = −1

κ
log η +

1

3κ
(η3 − 1) +

Π

κ
(2− 6η2 + 4η3). (D 5)

Two interesting results emerge by studying the functional forms of f1, g1 and g2 at
S → ∞. First, as the Coles wake factor becomes very high, it can be shown that g1

and g2 become geometrically identical in shape and are related by

−2κg1[η,∞,∞] = g2[η,∞,∞].

Secondly, by integrating the functions with respect to η from 0 to 1, we find that

f1i[Π,∞] = g2i[Π,∞]
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and using (4.6) a surprisingly simple form emerges:

f1i[Π,∞] =
6(1 + 2Π)

5(3 + 4Π)
. (D 6)
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